Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinform Adv ; 3(1): vbad102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600845

RESUMO

Summary: Artificial intelligence (AI)-driven laboratory automation-combining robotic labware and autonomous software agents-is a powerful trend in modern biology. We developed Genesis-DB, a database system designed to support AI-driven autonomous laboratories by providing software agents access to large quantities of structured domain information. In addition, we present a new ontology for modeling data and metadata from autonomously performed yeast microchemostat cultivations in the framework of the Genesis robot scientist system. We show an example of how Genesis-DB enables the research life cycle by modeling yeast gene regulation, guiding future hypotheses generation and design of experiments. Genesis-DB supports AI-driven discovery through automated reasoning and its design is portable, generic, and easily extensible to other AI-driven molecular biology laboratory data and beyond. Availability and implementation: Genesis-DB code and installation instructions are available at the GitHub repository https://github.com/TW-Genesis/genesis-database-system.git. The database use case demo code and data are also available through GitHub (https://github.com/TW-Genesis/genesis-database-demo.git). The ontology can be downloaded here: https://github.com/TW-Genesis/genesis-ontology/releases/download/v0.0.23/genesis.owl. The ontology term descriptions (including mappings to existing ontologies) and maintenance standard operating procedures can be found at: https://github.com/TW-Genesis/genesis-ontology.

2.
J R Soc Interface ; 19(189): 20210821, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35382578

RESUMO

Scientific results should not just be 'repeatable' (replicable in the same laboratory under identical conditions), but also 'reproducible' (replicable in other laboratories under similar conditions). Results should also, if possible, be 'robust' (replicable under a wide range of conditions). The reproducibility and robustness of only a small fraction of published biomedical results has been tested; furthermore, when reproducibility is tested, it is often not found. This situation is termed 'the reproducibility crisis', and it is one the most important issues facing biomedicine. This crisis would be solved if it were possible to automate reproducibility testing. Here, we describe the semi-automated testing for reproducibility and robustness of simple statements (propositions) about cancer cell biology automatically extracted from the literature. From 12 260 papers, we automatically extracted statements predicted to describe experimental results regarding a change of gene expression in response to drug treatment in breast cancer, from these we selected 74 statements of high biomedical interest. To test the reproducibility of these statements, two different teams used the laboratory automation system Eve and two breast cancer cell lines (MCF7 and MDA-MB-231). Statistically significant evidence for repeatability was found for 43 statements, and significant evidence for reproducibility/robustness in 22 statements. In two cases, the automation made serendipitous discoveries. The reproduced/robust knowledge provides significant insight into cancer. We conclude that semi-automated reproducibility testing is currently achievable, that it could be scaled up to generate a substantive source of reliable knowledge and that automation has the potential to mitigate the reproducibility crisis.


Assuntos
Neoplasias da Mama , Robótica , Automação , Biologia , Feminino , Humanos , Reprodutibilidade dos Testes
3.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845013

RESUMO

Almost all machine learning (ML) is based on representing examples using intrinsic features. When there are multiple related ML problems (tasks), it is possible to transform these features into extrinsic features by first training ML models on other tasks and letting them each make predictions for each example of the new task, yielding a novel representation. We call this transformational ML (TML). TML is very closely related to, and synergistic with, transfer learning, multitask learning, and stacking. TML is applicable to improving any nonlinear ML method. We tested TML using the most important classes of nonlinear ML: random forests, gradient boosting machines, support vector machines, k-nearest neighbors, and neural networks. To ensure the generality and robustness of the evaluation, we utilized thousands of ML problems from three scientific domains: drug design, predicting gene expression, and ML algorithm selection. We found that TML significantly improved the predictive performance of all the ML methods in all the domains (4 to 50% average improvements) and that TML features generally outperformed intrinsic features. Use of TML also enhances scientific understanding through explainable ML. In drug design, we found that TML provided insight into drug target specificity, the relationships between drugs, and the relationships between target proteins. TML leads to an ecosystem-based approach to ML, where new tasks, examples, predictions, and so on synergistically interact to improve performance. To contribute to this ecosystem, all our data, code, and our ∼50,000 ML models have been fully annotated with metadata, linked, and openly published using Findability, Accessibility, Interoperability, and Reusability principles (∼100 Gbytes).

4.
NPJ Syst Biol Appl ; 7(1): 38, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671039

RESUMO

Machine reading (MR) is essential for unlocking valuable knowledge contained in millions of existing biomedical documents. Over the last two decades1,2, the most dramatic advances in MR have followed in the wake of critical corpus development3. Large, well-annotated corpora have been associated with punctuated advances in MR methodology and automated knowledge extraction systems in the same way that ImageNet4 was fundamental for developing machine vision techniques. This study contributes six components to an advanced, named entity analysis tool for biomedicine: (a) a new, Named Entity Recognition Ontology (NERO) developed specifically for describing textual entities in biomedical texts, which accounts for diverse levels of ambiguity, bridging the scientific sublanguages of molecular biology, genetics, biochemistry, and medicine; (b) detailed guidelines for human experts annotating hundreds of named entity classes; (c) pictographs for all named entities, to simplify the burden of annotation for curators; (d) an original, annotated corpus comprising 35,865 sentences, which encapsulate 190,679 named entities and 43,438 events connecting two or more entities; (e) validated, off-the-shelf, named entity recognition (NER) automated extraction, and; (f) embedding models that demonstrate the promise of biomedical associations embedded within this corpus.

5.
Proc Natl Acad Sci U S A ; 116(36): 18142-18147, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31420515

RESUMO

One of the most challenging tasks in modern science is the development of systems biology models: Existing models are often very complex but generally have low predictive performance. The construction of high-fidelity models will require hundreds/thousands of cycles of model improvement, yet few current systems biology research studies complete even a single cycle. We combined multiple software tools with integrated laboratory robotics to execute three cycles of model improvement of the prototypical eukaryotic cellular transformation, the yeast (Saccharomyces cerevisiae) diauxic shift. In the first cycle, a model outperforming the best previous diauxic shift model was developed using bioinformatic and systems biology tools. In the second cycle, the model was further improved using automatically planned experiments. In the third cycle, hypothesis-led experiments improved the model to a greater extent than achieved using high-throughput experiments. All of the experiments were formalized and communicated to a cloud laboratory automation system (Eve) for automatic execution, and the results stored on the semantic web for reuse. The final model adds a substantial amount of knowledge about the yeast diauxic shift: 92 genes (+45%), and 1,048 interactions (+147%). This knowledge is also relevant to understanding cancer, the immune system, and aging. We conclude that systems biology software tools can be combined and integrated with laboratory robots in closed-loop cycles.


Assuntos
Biologia Computacional , Regulação Fúngica da Expressão Gênica , Robótica , Saccharomyces cerevisiae , Software , Biologia de Sistemas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
J Cheminform ; 11(1): 68, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33430958

RESUMO

The goal of quantitative structure activity relationship (QSAR) learning is to learn a function that, given the structure of a small molecule (a potential drug), outputs the predicted activity of the compound. We employed multi-task learning (MTL) to exploit commonalities in drug targets and assays. We used datasets containing curated records about the activity of specific compounds on drug targets provided by ChEMBL. Totally, 1091 assays have been analysed. As a baseline, a single task learning approach that trains random forest to predict drug activity for each drug target individually was considered. We then carried out feature-based and instance-based MTL to predict drug activities. We introduced a natural metric of evolutionary distance between drug targets as a measure of tasks relatedness. Instance-based MTL significantly outperformed both, feature-based MTL and the base learner, on 741 drug targets out of 1091. Feature-based MTL won on 179 occasions and the base learner performed best on 171 drug targets. We conclude that MTL QSAR is improved by incorporating the evolutionary distance between targets. These results indicate that QSAR learning can be performed effectively, even if little data is available for specific drug targets, by leveraging what is known about similar drug targets.

7.
Mach Learn ; 107(1): 285-311, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31997851

RESUMO

We investigate the learning of quantitative structure activity relationships (QSARs) as a case-study of meta-learning. This application area is of the highest societal importance, as it is a key step in the development of new medicines. The standard QSAR learning problem is: given a target (usually a protein) and a set of chemical compounds (small molecules) with associated bioactivities (e.g. inhibition of the target), learn a predictive mapping from molecular representation to activity. Although almost every type of machine learning method has been applied to QSAR learning there is no agreed single best way of learning QSARs, and therefore the problem area is well-suited to meta-learning. We first carried out the most comprehensive ever comparison of machine learning methods for QSAR learning: 18 regression methods, 3 molecular representations, applied to more than 2700 QSAR problems. (These results have been made publicly available on OpenML and represent a valuable resource for testing novel meta-learning methods.) We then investigated the utility of algorithm selection for QSAR problems. We found that this meta-learning approach outperformed the best individual QSAR learning method (random forests using a molecular fingerprint representation) by up to 13%, on average. We conclude that meta-learning outperforms base-learning methods for QSAR learning, and as this investigation is one of the most extensive ever comparisons of base and meta-learning methods ever made, it provides evidence for the general effectiveness of meta-learning over base-learning.

8.
J Biomed Semantics ; 7(1): 66, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27955708

RESUMO

This special issue covers selected papers from the 18th Bio-Ontologies Special Interest Group meeting and Phenotype Day, which took place at the Intelligent Systems for Molecular Biology (ISMB) conference in Dublin in 2015. The papers presented in this collection range from descriptions of software tools supporting ontology development and annotation of objects with ontology terms, to applications of text mining for structured relation extraction involving diseases and phenotypes, to detailed proposals for new ontologies and mapping of existing ontologies. Together, the papers consider a range of representational issues in bio-ontology development, and demonstrate the applicability of bio-ontologies to support biological and clinical knowledge-based decision making and analysis.The full set of papers in the Thematic Issue is available at http://www.biomedcentral.com/collections/sig .


Assuntos
Ontologias Biológicas , Fenótipo
9.
PLoS One ; 11(4): e0154556, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27128319

RESUMO

The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed in association with OBI. The current release of OBI is available at http://purl.obolibrary.org/obo/obi.owl.


Assuntos
Ontologias Biológicas , Animais , Ontologias Biológicas/organização & administração , Ontologias Biológicas/estatística & dados numéricos , Ontologias Biológicas/tendências , Biologia Computacional , Bases de Dados Factuais , Humanos , Internet , Metadados , Semântica , Software
10.
J Biomed Semantics ; 6: 40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26682035

RESUMO

The bio-ontologies and phenotypes special issue includes eight papers selected from the 11 papers presented at the Bio-Ontologies SIG (Special Interest Group) and the Phenotype Day at ISMB (Intelligent Systems for Molecular Biology) conference in Boston in 2014. The selected papers span a wide range of topics including the automated re-use and update of ontologies, quality assessment of ontological resources, and the systematic description of phenotype variation, driven by manual, semi- and fully automatic means.


Assuntos
Ontologias Biológicas , Fenótipo , Humanos
11.
PLoS Biol ; 13(12): e1002310, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26633141

RESUMO

Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.


Assuntos
Cromatina/química , DNA/química , Engenharia Genética/métodos , Modelos Genéticos , Simbolismo , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Desenho Assistido por Computador , Comportamento Cooperativo , DNA/metabolismo , Bases de Dados de Ácidos Nucleicos , Engenharia Genética/normas , Engenharia Genética/tendências , Humanos , Internet , Motivos de Nucleotídeos , Publicações , Sequências Reguladoras de Ácido Nucleico , Software
12.
J R Soc Interface ; 12(104): 20141289, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25652463

RESUMO

There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.


Assuntos
Desenho de Fármacos , Reposicionamento de Medicamentos , Doenças Raras/tratamento farmacológico , Tecnologia Farmacêutica/tendências , Algoritmos , Antineoplásicos/uso terapêutico , Automação , Avaliação Pré-Clínica de Medicamentos , Humanos , Malária Vivax/tratamento farmacológico , Modelos Estatísticos , Plasmodium vivax/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Análise de Regressão , Reprodutibilidade dos Testes , Software , Medicina Tropical
13.
BMC Bioinformatics ; 15 Suppl 14: S5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25472549

RESUMO

BACKGROUND: The reliability and reproducibility of experimental procedures is a cornerstone of scientific practice. There is a pressing technological need for the better representation of biomedical protocols to enable other agents (human or machine) to better reproduce results. A framework that ensures that all information required for the replication of experimental protocols is essential to achieve reproducibility. To construct EXACT2 we manually inspected hundreds of published and commercial biomedical protocols from several areas of biomedicine. After establishing a clear pattern for extracting the required information we utilized text-mining tools to translate the protocols into a machine amenable format. We have verified the utility of EXACT2 through the successful processing of previously 'unseen' (not used for the construction of EXACT2)protocols. METHODS: We have developed the ontology EXACT2 (EXperimental ACTions) that is designed to capture the full semantics of biomedical protocols required for their reproducibility. RESULTS: The paper reports on a fundamentally new version EXACT2 that supports the semantically-defined representation of biomedical protocols. The ability of EXACT2 to capture the semantics of biomedical procedures was verified through a text mining use case. In this EXACT2 is used as a reference model for text mining tools to identify terms pertinent to experimental actions, and their properties, in biomedical protocols expressed in natural language. An EXACT2-based framework for the translation of biomedical protocols to a machine amenable format is proposed. CONCLUSIONS: The EXACT2 ontology is sufficient to record, in a machine processable form, the essential information about biomedical protocols. EXACT2 defines explicit semantics of experimental actions, and can be used by various computer applications. It can serve as a reference model for for the translation of biomedical protocols in natural language into a semantically-defined format.


Assuntos
Ontologias Biológicas , Mineração de Dados , Software , Processamento Eletrônico de Dados , Idioma , Reprodutibilidade dos Testes , Semântica
14.
J Biomed Semantics ; 4 Suppl 1: S7, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23734675

RESUMO

The theory of probability is widely used in biomedical research for data analysis and modelling. In previous work the probabilities of the research hypotheses have been recorded as experimental metadata. The ontology HELO is designed to support probabilistic reasoning, and provides semantic descriptors for reporting on research that involves operations with probabilities. HELO explicitly links research statements such as hypotheses, models, laws, conclusions, etc. to the associated probabilities of these statements being true. HELO enables the explicit semantic representation and accurate recording of probabilities in hypotheses, as well as the inference methods used to generate and update those hypotheses. We demonstrate the utility of HELO on three worked examples: changes in the probability of the hypothesis that sirtuins regulate human life span; changes in the probability of hypotheses about gene functions in the S. cerevisiae aromatic amino acid pathway; and the use of active learning in drug design (quantitative structure activity relation learning), where a strategy for the selection of compounds with the highest probability of improving on the best known compound was used. HELO is open source and available at https://github.com/larisa-soldatova/HELO.

15.
J Biomed Semantics ; 4 Suppl 1: I1, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23735191

RESUMO

Over the 15 years, the Bio-Ontologies SIG at ISMB has provided a forum for discussion of the latest and most innovative research in the bio-ontologies development, its applications to biomedicine and more generally the organisation, presentation and dissemination of knowledge in biomedicine and the life sciences. The seven papers and the commentary selected for this supplement span a wide range of topics including: web-based querying over multiple ontologies, integration of data, annotating patent records, NCBO Web services, ontology developments for probabilistic reasoning and for physiological processes, and analysis of the progress of annotation and structural GO changes.

16.
J Biomed Inform ; 46(4): 615-25, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23665300

RESUMO

In this paper we discuss the design and development of TRAK (Taxonomy for RehAbilitation of Knee conditions), an ontology that formally models information relevant for the rehabilitation of knee conditions. TRAK provides the framework that can be used to collect coded data in sufficient detail to support epidemiologic studies so that the most effective treatment components can be identified, new interventions developed and the quality of future randomized control trials improved to incorporate a control intervention that is well defined and reflects clinical practice. TRAK follows design principles recommended by the Open Biomedical Ontologies (OBO) Foundry. TRAK uses the Basic Formal Ontology (BFO) as the upper-level ontology and refers to other relevant ontologies such as Information Artifact Ontology (IAO), Ontology for General Medical Science (OGMS) and Phenotype And Trait Ontology (PATO). TRAK is orthogonal to other bio-ontologies and represents domain-specific knowledge about treatments and modalities used in rehabilitation of knee conditions. Definitions of typical exercises used as treatment modalities are supported with appropriate illustrations, which can be viewed in the OBO-Edit ontology editor. The vast majority of other classes in TRAK are cross-referenced to the Unified Medical Language System (UMLS) to facilitate future integration with other terminological sources. TRAK is implemented in OBO, a format widely used by the OBO community. TRAK is available for download from http://www.cs.cf.ac.uk/trak. In addition, its public release can be accessed through BioPortal, where it can be browsed, searched and visualized.


Assuntos
Traumatismos do Joelho/reabilitação , Vocabulário Controlado , Humanos
17.
J Biomed Semantics ; 3 Suppl 1: I1, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22541591

RESUMO

Over the 14 years, the Bio-Ontologies SIG at ISMB has provided a forum for discussion of the latest and most innovative research in the bio-ontologies development, its applications to biomedicine and more generally the organisation, presentation and dissemination of knowledge in biomedicine and the life sciences. The seven papers selected for this supplement span a wide range of topics including: web-based querying over multiple ontologies, integration of data from wikis, innovative methods of annotating and mining electronic health records, advances in annotating web documents and biomedical literature, quality control of ontology alignments, and the ontology support for predictive models about toxicity and open access to the toxicity data.

18.
J Biomed Semantics ; 2 Suppl 2: I1, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21624154

RESUMO

Over the years, the Bio-Ontologies SIG at ISMB has provided a forum for discussion of the latest and most innovative research in the application of ontologies and more generally the organisation, presentation and dissemination of knowledge in biomedicine and the life sciences. The ten papers selected for this supplement are extended versions of the original papers presented at the 2010 SIG. The papers span a wide range of topics including practical solutions for data and knowledge integration for translational medicine, hypothesis based querying , understanding kidney and urinary pathways, mining the pharmacogenomics literature; theoretical research into the orthogonality of biomedical ontologies, the representation of diseases, the representation of research hypotheses, the combination of ontologies and natural language processing for an annotation framework, the generation of textual definitions, and the discovery of gene interaction networks.

19.
J Biomed Semantics ; 2 Suppl 2: S9, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21624164

RESUMO

BACKGROUND: Hypotheses are now being automatically produced on an industrial scale by computers in biology, e.g. the annotation of a genome is essentially a large set of hypotheses generated by sequence similarity programs; and robot scientists enable the full automation of a scientific investigation, including generation and testing of research hypotheses. RESULTS: This paper proposes a logically defined way for recording automatically generated hypotheses in machine amenable way. The proposed formalism allows the description of complete hypotheses sets as specified input and output for scientific investigations. The formalism supports the decomposition of research hypotheses into more specialised hypotheses if that is required by an application. Hypotheses are represented in an operational way - it is possible to design an experiment to test them. The explicit formal description of research hypotheses promotes the explicit formal description of the results and conclusions of an investigation. The paper also proposes a framework for automated hypotheses generation. We demonstrate how the key components of the proposed framework are implemented in the Robot Scientist "Adam". CONCLUSIONS: A formal representation of automatically generated research hypotheses can help to improve the way humans produce, record, and validate research hypotheses. AVAILABILITY: http://www.aber.ac.uk/en/cs/research/cb/projects/robotscientist/results/

20.
J R Soc Interface ; 8(63): 1440-8, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21490004

RESUMO

The reuse of scientific knowledge obtained from one investigation in another investigation is basic to the advance of science. Scientific investigations should therefore be recorded in ways that promote the reuse of the knowledge they generate. The use of logical formalisms to describe scientific knowledge has potential advantages in facilitating such reuse. Here, we propose a formal framework for using logical formalisms to promote reuse. We demonstrate the utility of this framework by using it in a worked example from biology: demonstrating cycles of investigation formalization [F] and reuse [R] to generate new knowledge. We first used logic to formally describe a Robot scientist investigation into yeast (Saccharomyces cerevisiae) functional genomics [f(1)]. With Robot scientists, unlike human scientists, the production of comprehensive metadata about their investigations is a natural by-product of the way they work. We then demonstrated how this formalism enabled the reuse of the research in investigating yeast phenotypes [r(1) = R(f(1))]. This investigation found that the removal of non-essential enzymes generally resulted in enhanced growth. The phenotype investigation was then formally described using the same logical formalism as the functional genomics investigation [f(2) = F(r(1))]. We then demonstrated how this formalism enabled the reuse of the phenotype investigation to investigate yeast systems-biology modelling [r(2) = R(f(2))]. This investigation found that yeast flux-balance analysis models fail to predict the observed changes in growth. Finally, the systems biology investigation was formalized for reuse in future investigations [f(3) = F(r(2))]. These cycles of reuse are a model for the general reuse of scientific knowledge.


Assuntos
Pesquisa Biomédica/métodos , Genômica/métodos , Disseminação de Informação/métodos , Saccharomyces cerevisiae/genética , Simulação por Computador , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Modelos Teóricos , Biologia de Sistemas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...